binom Coeficienţii

Este imposibil de dovedit.Din partea stângă este n ^ k / k ^ k, şi de partea dreaptă este n ^ k / k!, Dubla verificare a sursei.

 
Nu este prea greu pentru a dovedi .....
Aveţi în continuare nevoie de el?

Toate cele bune

 
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$k=k' title="3 $ k = k" alt='3$k=k' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$k>k-1' title="3 $ k> K-1" alt='3$k>k-1' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$k>k-2' title="3 $ k> k-2" alt='3$k>k-2' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$.........' title="3 $........." alt='3$.........' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$k>1' title="3 $ k> 1" alt='3$k>1' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$=>k^k > k!' title="3 $ => k ^ k> k!" alt='3$=>k^k > k!' align=absmiddle>
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$=>{\frac{1}{k^k}}
<img src='http://www.elektroda.pl/cgi-bin/mimetex/mimetex.cgi?3$=> {(\frac{n}{k})}^k < \frac{n^k}{k!}' title="3 $ => ((\ frac (n) (k))) ^ k <\ frac (n ^ k) (k!)" alt='3$=> {(\frac{n}{k})}^k < \frac{n^k}{k!}' align=absmiddle>
 

Welcome to EDABoard.com

Sponsor

Back
Top